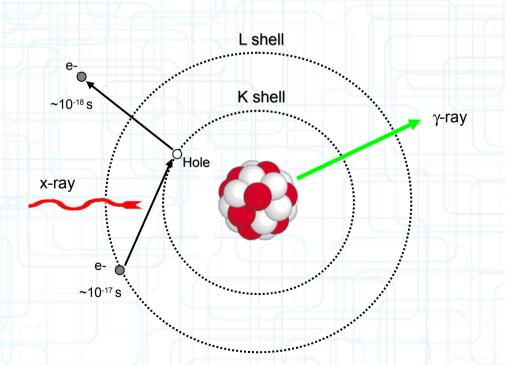
### A Further Measurement to Test Electron Conversion Theory: 116In Measurement for Detector Calibration

By Sondra N. Miller

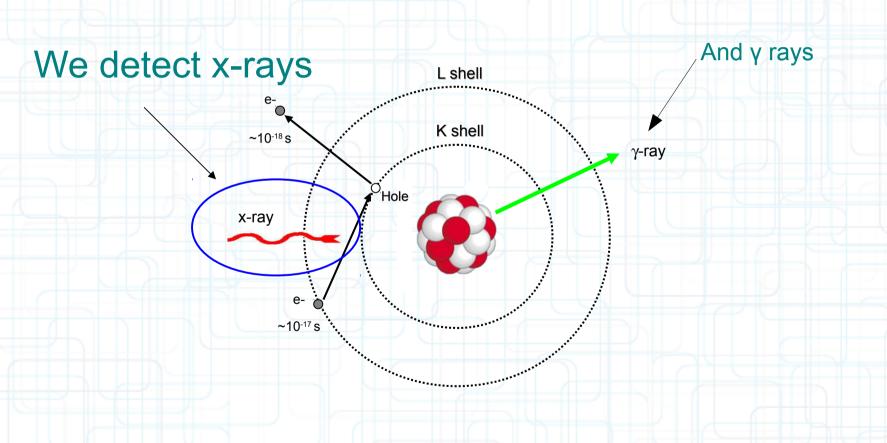
Cyclotron Institute


Texas A&M University



#### **Overview**

- Internal Conversion
- •119m Sn Measurement
- •Purpose of measuring 116 In
- Data Collection
- Spectral analysis
- Preliminary Results
- Conclusion
- Acknowledgements


- Nuclear transition
  - Competition between γ-ray emission or electron emission



- Internal Conversion Coefficient (ICC)
  - Number of electrons emitted : Number of γ-rays emitted
  - Can be expressed for each shell

$$\alpha = \frac{N_{electrons}}{I_{\gamma}}$$

$$\alpha = \sum_{i} \alpha_{i} = \alpha_{K} + \alpha_{L} + \alpha_{M} + \dots$$



- Internal Conversion Coefficient (ICC)
  - Number of electrons ejected : Number of γ-rays emitted
  - Can be expressed for each shell

$$\alpha = \frac{N_{electrons}}{I_{\gamma}}$$

$$\alpha = \sum_{i} \alpha_{i} = \alpha_{K} + \alpha_{L} + \alpha_{M} + \dots$$

- Fluorescence yield
  - Relates number of x-rays emitted to number of electrons emitted

$$\alpha_{K} = \left(\frac{1}{\omega_{K}}\right) \left(\frac{I_{Kx}}{I_{Y}}\right)$$

- ICC crucial for nuclear decay schemes
  - Transition rates
  - Spin and parity designations
  - Branching Ratios
- Few available precise data
  - ~10 measurements available with error <1%</p>
- Experimental data to test theoretical calculations
  - Determine valid ICC modeling method

- •Two main theoretical models:
  - 1) Accounts for the hole left behind by the departing electron.
  - 2) Regards the hole left behind by the departing electron as negligible (filled quickly)

### **ICC** of Interest

### Decay of 119mSn

|   | Te114<br>15.2 m  | Te115            | Te116          | Te117             | Te118<br>6.00 d    | Te119           | Te120           | Te121          | Te122         | Te123<br>1E+13 y | Te124          | Te125            |
|---|------------------|------------------|----------------|-------------------|--------------------|-----------------|-----------------|----------------|---------------|------------------|----------------|------------------|
|   | 0+               | 7/2+             | 0+             | 1/2+              | 0+                 | 1/2+            | 0+              | 1/2+           | 0+            | 1/2+ *           | 0+             | 1/2+             |
| H | EC               | EC               | EC             | EC                | EC                 | EC              | 0.096           | EC             | 2.603         | 0.908            | 4.816          | 7.139            |
|   | Sb113            | Sb114            | Sb115          | Sb116             | Sb117              | Sb118           | Sb119           | Sb120          | Sb121         | Sb122            | Sb123          | Sb124            |
|   | 6.67 m<br>5/2+   | 3.49 m<br>3+     | 32.1 m<br>5/2+ | 15.8 m<br>3+      | 2.80 h<br>5/2+     | 3.6 m<br>1+     | 38.19 h<br>5/2+ | 15.89 m<br>1+  | 5/2+          | 2.7238 d<br>2-   | 7/2+           | 60.20 d<br>3-    |
| 1 | EC               | EC               | EC             | EC *              | EC                 | *EC             | *EC             | EC *           | 57.36         | *<br>ΕC,β-       | 42.64          | *<br>β-          |
| 1 | Sn112            | Sn113            | Sn114          | Sn115             | Sn116              | Sn117           | Sn118           | Sn119          | Sn120         | Sn121            | Sn122          | Sn123            |
| 1 | 0+               | 115.09 d<br>1/2+ | 0+             | 1/2+              | 0+                 | 1/2+            | 0+              | 1/2+           | 0+            | 27.06 h<br>3/2+  | 0+             | 129.2 d<br>11/2- |
|   | 0.97             | EC *             | 0.65           | 0.34              | 14.53              | 7.68            | 24.23           | 8.59           | 32.59         | *<br>β-          | 4.63           | *<br>β-          |
|   | In111            | In112            | In113          | In114             | In115              | In116           | In117           | luiio          | In119         | In120            | In121          | In122            |
|   | 2.8047 d<br>9/2+ | 14.97 m<br>1+    | 9/2+           | 71.9 s<br>1+      | 4.41E+14 y<br>9/2+ | 14.10 s<br>1+   | 43.2 m<br>9/2+  | 5.0 s<br>1+    | 2.4 m<br>9/2+ | 3.08 s<br>1+     | 23.1 s<br>9/2+ | 1.5 s<br>1+      |
|   | EC *             | <b>EC,β</b> -    | 4.3            | <b>EC,β</b> -     | β- *               | <b>EC,</b> β-   | β-              | β-             | β-            | β-               | β-             | β-               |
|   | Cd110            | Cd111            | Cd112          | Cd113             | Cd114              | Cd115           | Cd116           | Cd117          | Cd118         | Cd119            | Cd120          | Cd121            |
|   | 0+               | 1/2+             | 0+             | 9.3E+15 y<br>1/2+ | 0+                 | 53.46 h<br>1/2+ | 0+              | 2.49 h<br>1/2+ | 50.3 m<br>0+  | 2.69 m<br>3/2+   | 50.80 s<br>0+  | 13.5 s<br>(3/2+) |
|   | 12.49            | 12.80            | 24.13          | β- *              | 28.73              | β-              | 7.49            | β-             | β-            | β-               | β-             | β-               |

#### **ICC** of Interest

# <sup>119m</sup><sub>50</sub> Sn<sub>69</sub>

**Half life:** 293.1 d 7

**E(level):** 89.531 *13* keV

**Jp:** 11/2-

 $S_n$  (keV): 6485.4 14  $S_p$  (keV): 10126 8

Prod. mode: Fast neutron activation

Thermal neutron activation

**ENSDF citation:** NDS 67,327 (1992)

Literature cut-off date: 1-May-1991

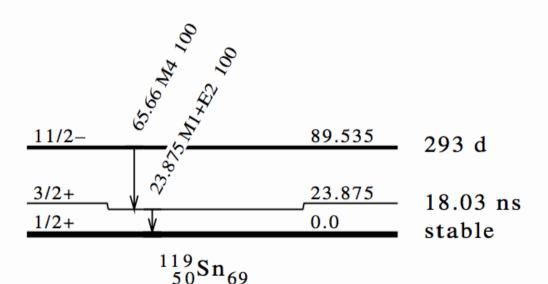
Author(s): K. Kitao, M. Kanbe and K. Ogawa

**References since cut-off:** 119 Sn decay from 1991-98 (NSR)

#### Decay properties:

Mode Branching (%) Q-value (keV) References
IT 100 68Bo09

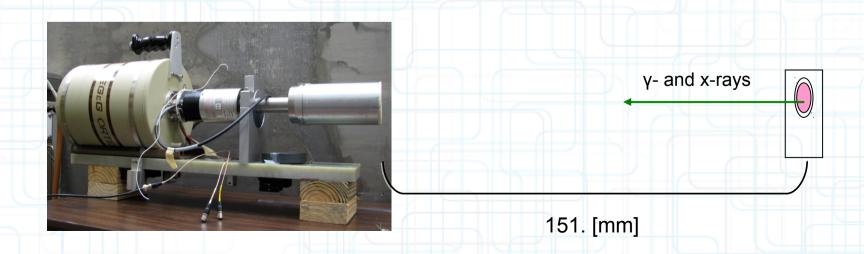
11 100 0000


Source: Lund/LBNL Nuclear Data Search; WWW Table of Radioactive Isotopes

#### ICC of Interest

119Sn IT Decay 1968Bo09

Decay Scheme


Intensities: I(γ+ce) per 100 parent decays %IT=100



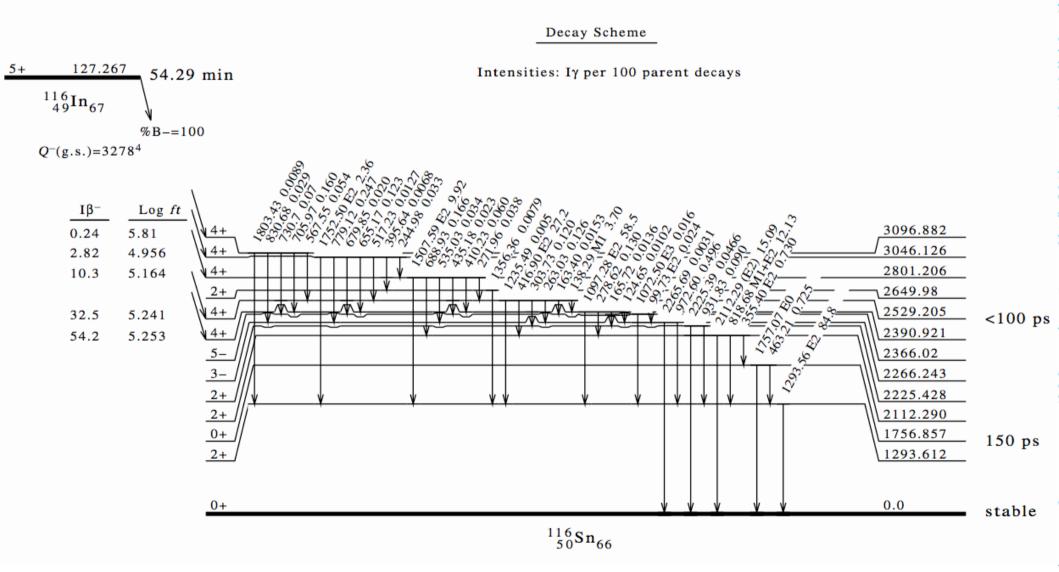
Source: National Nuclear Data Center; Evaluated Nuclear Structure Data File

# Measuring ICC of Interest

- Hyper pure germanium detector, Cyclotron Institute, Texas A&M University
  - Relative photopeak efficiencies calibrated to 0.15% above 50 [keV] at 151.[mm]

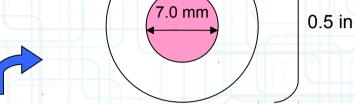


### ICC of Interest: 116In


Emission of Sn x-rays following the β decay of <sup>116</sup>In

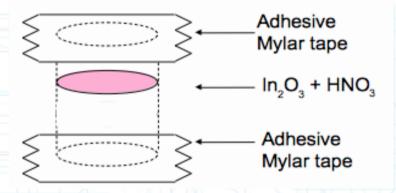
- <sup>116</sup>In β- decays to <sup>116</sup>Sn
  - 138 [keV] and 418 [keV] γ rays
  - Sn x-rays
- Values of α<sub>k</sub> are in agreement
- Used to calibrate detector at range of Sn x-rays

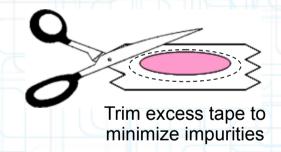
|   | EC *                  | EC                        | EC *                   | 0.006                 | EC *                 | 2 (02                  | EC *                    |   |
|---|-----------------------|---------------------------|------------------------|-----------------------|----------------------|------------------------|-------------------------|---|
| 5 | Sb116                 | Sb117                     | Sb118                  | 0.096<br>Sb119        | Sb120                | 2.603<br>Sb121         | 0.908<br>Sb122          |   |
| 1 | 15.8 m<br>3+          | 2.80 h<br>5/2+            | 3.6 m<br>1+<br>*       | 38.19 h<br>5/2+       | 15.89 m<br>1+<br>*   | 5/2+                   | 2.7238 d<br>2-          |   |
|   | EC                    | EC                        | EC                     | EC                    | EC                   | 57.36                  | EC,β-                   |   |
| 4 | Sn115                 | Sn116                     | Sn117                  | Sn118                 | Sn119                | Sn120                  | Sn121                   | Ш |
|   | 1/2+                  | 0+                        | 1/2+                   | 0+                    | 1/2+                 | 0+                     | 27.06 h<br>3/2+         |   |
|   | 0.34                  | 14.53                     | 7.68                   | 24.23                 | 8.59                 | 32.59                  | β-                      |   |
| 3 | In114<br>71.9 s<br>1+ | In115<br>4.41E+14<br>9/2+ | In116<br>14.10 s<br>1+ | n117<br>3.2 m<br>9/2+ | 11110<br>5.0 s<br>1+ | In119<br>2.4 m<br>9/2+ | In120<br>3.08 s<br>1+   |   |
|   | EC,β-                 | β- 2                      | <b>ΨC,β</b> -          |                       | β-                   | β-                     | β-                      | β |
| 2 | Cd113<br>9.3E+15 y    | Cd114                     | Cd115<br>53.46 h       | Cd116                 | Cd117<br>2.49 h      | Cd118<br>50.3 m        | Cd119<br>2.69 m<br>3/2+ |   |

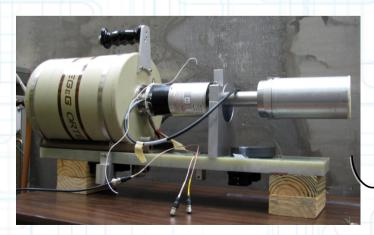

# ICC of Interest: 116 In

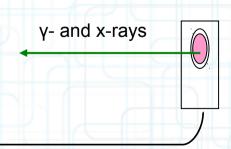
<sup>116</sup>In β- Decay (54.29 min) 2006Kr04




Source: National Nuclear Data Center; Evaluated Nuclear Structure Data File


### **Data Collection**



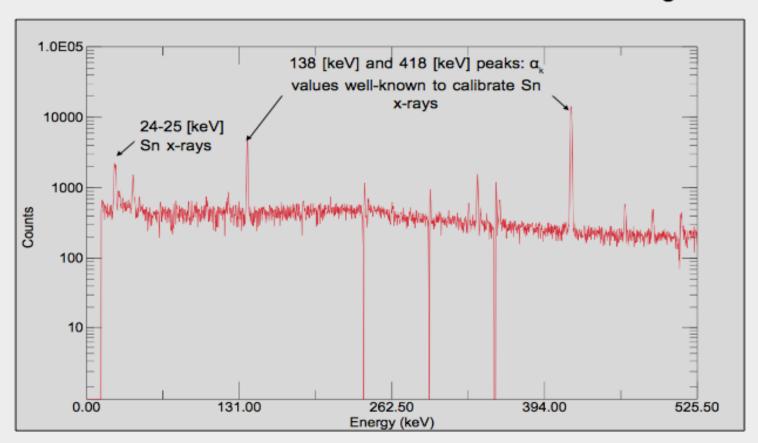


Source ready to be irradiated











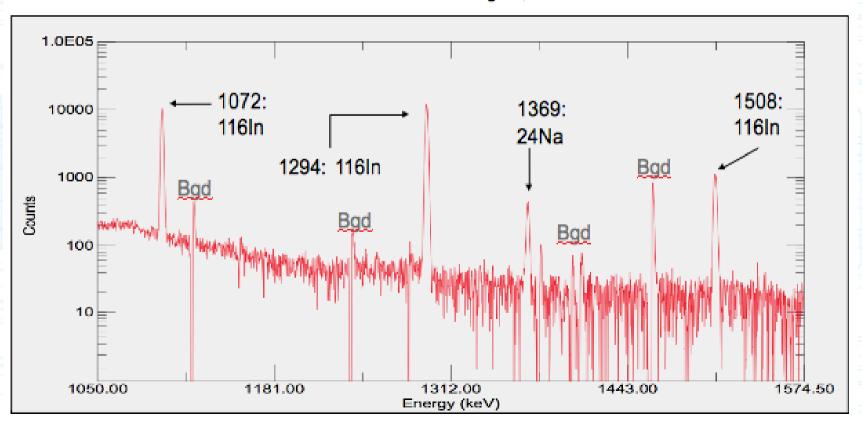

### **Spectral Analysis**

Source: June 2011 <sup>116</sup>In, spectrum 4

~8 hour measurement

<sup>116</sup>In: Number of Photons Detected with Given Energies




### **Radiation Spectra**

- Impurity criteria:
  - Energy and intensity of γ rays
- •Likely impurities:
  - Activated varieties of other isotopes in the source
  - Elements with nearby Z values
  - Activated nuclei of mounting material
- Additional spectra analyzed
  - 119m Sn spectrum
  - 182 Ta spectrum

### Radiation Spectra

Source: June 2011 <sup>116</sup>In, spectrum 4 ~8 hour measurement

116In: Number of Photons Detected at Given Energies; Source Nuclei of Peaks Labeled



# **Preliminary Results**

- •Impurities identified:
  - 122 Sb
  - 124Sb
  - 140 La
  - <sup>24</sup>Na
  - 115 In (from fast neutrons)
- •Using calibration from <sup>116</sup>In:
  - $^{119m}$ Sn:  $\alpha_{L} = 1601(40)$  PRELIMINARY
    - α, (no hole) = 1544
    - $\alpha_{l}$  (hole) = 1618

### Summary

- Obtained preliminary detector calibration at Sn x-ray range
- Analyzed Sn and Ta spectra for impurities
- Successfully analyzed 4 In spectra for impurities
- Performed impurity subtraction
- •Calculated preliminary values for α<sub>k</sub> for <sup>119m</sup>Sn
- More detailed analysis of x-rays needed
  - Analysis is ongoing
- Produce new source without fast neutrons in activation channel

## Acknowledgements

- Dr. John Hardy, Advisor
- Dr. Ninel Nica, Deputy Advisor
- Hardy Research Group
  - John Goodwin, Hyo-In Park, Lixin Chen, Miguel Bencomo, Victor Iacob, Ian Towner, Vladimir Horvat
- Texas A&M Cyclotron Institute REU Program
  - Dr. Sherry Yennello
  - Leslie Speikes
  - Larry May